a2 United States Patent

Kruglick

US009195490B2

US 9,195,490 B2
Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)
(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

DIFFERENTIAL VOLTAGE AND
FREQUENCY SCALING (DVFS) SWITCH
REDUCTION

Applicant: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington,

DE (US)

Inventor: Ezekiel Kruglick, Poway, CA (US)

Assignee: Empire Technology Development LL.C,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 47 days.

Appl. No.: 14/347,894
PCT Filed: Jul. 9, 2013

PCT No.:

§371 (o)D),
(2) Date:

PCT/US2013/049738

Mar. 27,2014

PCT Pub. No.: WO02015/005909
PCT Pub. Date: Jan. 15, 2015

Prior Publication Data

US 2015/0046923 Al Feb. 12,2015

Int. Cl1.

GO6F 9/455 (2006.01)

GO6F 1/00 (2006.01)

GO6F 1130 (2006.01)

U.S. CL

CPC GO6F 9/45533 (2013.01); GO6F 9/455

(2013.01); GO6F 11/30 (2013.01)

USPC 718/1; 713/300-340
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,730,340 B2* 6/2010 Huetal.ccocevvveneen. 713/323
7,739,532 B2* 6/2010 Grobman 713/322
7,840,825 B2* 11/2010 Altevogt et al. .. 713/320
8,261,112 B2* 9/2012 Carteretal. 713/320
8,364,997 B2* 1/2013 Tianetal. ..o 713/322
(Continued)
OTHER PUBLICATIONS

“AMDG64 Architecture Programmer’s Manual,” System Program-
ming, 2012, pp. 624, vol. 2, Advanced Micro Devices.

(Continued)

Primary Examiner — Qing Chen
(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Technologies are generally described for systems, devices
and methods effective to schedule access to a core. In some
examples, a first differential voltage frequency scaling
(DVFS) value of a first virtual machine may be received by a
virtual machine manager. A second DVFS value of a second
virtual machine may be received by the virtual machine man-
ager. A third DVFS value of a third virtual machine may be
received by the virtual machine manager. The third DVFS
value may be substantially the same as the first DVFS value
and different from the second DVFS value. A dispatch cycle
may be generated to execute the first, second and third virtual
machines on the core. After execution of the first virtual
machine, the dispatch cycle may require execution of the third
virtual machine before execution of the second virtual

Field of Classification Search machine.
CPC GOO6F 1/30; GOG6F 9/455; GOO6F 9/45533;
GO6F 11/30 18 Claims, 5 Drawing Sheets
Virtual machine manager - 120
122 DVFS
quantizing 126
module
DVFS Modified Dispateh Cycle
reordering 130

module

wmior | vmm
\DvFsb

214

Reordering

vm100| VMM
VMM \DVFsa DVFSa

%

1
VMM \ DV
DVFSc DVFSb\

US 9,195,490 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
8,402,140 B2* 3/2013 Zhangetal. 709/226
8,493,856 B2* 7/2013 Francini et al. .. 370/231

8.645.733 B2* 22014 Kansal ctal. 713/320
8,892,916 B2* 11/2014 Bieswanger et al. 713/320

2007/0150893 Al* 6/2007 Grobman 718/1
2008/0098254 Al* 4/2008 Altevogt et al. 713/600
2008/0201591 Al* 82008 Huetal. ... 713/323
2009/0132840 Al 5/2009 Talwar et al.

2010/0037038 Al* 2/2010 Bieswangeretal. ... 712/220
2011/0149990 Al 6/2011 Francini et al.

2011/0154321 Al 6/2011 Tian et al.

2011/0173329 Al 7/2011 Zhang et al.

2012/0290865 Al 11/2012 Kansal et al.

2013/0205126 Al* 82013 Kruglickccooeiiiininnn 713/1

OTHER PUBLICATIONS

“vSphere Resource Management Guide,” VMware Inc, 2006-2011,
pp. 1-120.

Bertran, R, et al., “Counter-Based Power Modeling Methods: Top-
Down Vs. Bottom-Up,” The Computer Journal, 2012, pp. 198-213 ,
vol. 56, No. 2.

Binet, G. “Forcing the CPU affinity can make a monothreaded pro-
cess run 2-3x faster,” accessed at http://klaig.blogspot.com/2012/12/
forcing-cpu-affinity-can-make.html, Dec. 8, 2012, pp. 1-3.
Flautner, K., and Mudge, T., “Vertigo: Automatic Performance-Set-
ting for Linux,” Proc. Sth Symp. Operating Systems Design and
Implementation, 2002, pp. 105-116, The Usenix Association.

Howard, 1., et al., “A 48-Core 1A-32 Processor in 45 Nm CMOS
Using On-Die Message-Passing and DVFS for Performance and
Power Scaling,” IEEE Journal of Solid-State Circuits, 2011, pp.
173-183, vol. 46, No. 1.

Kong, J., et al., “Low-Cost Application-Aware DVFS for Multi-core
Architecture,” IEEE Third International Conference on Convergence
and Hybrid Information Technology, 2008, pp. 106-111.

Myers, M., and Youndt., S., “An Introduction to Hardware-Assisted
Virtual Machine (HVM) Rootkits,” White Paper of Crucial Security,
2007-2009, pp. 1-15, Harris Corporation.

Nathuji, R., and Schwan, K., “VirtualPower: Coordinated Power
Management in Virtualized Enterprise Systems,” ACM SIGOPS
Operating Systems Review, 2007, pp. 265-278, vol. 41, No. 6.
Nathuji, R., et al., “Feedback Driven QoS-Aware Power Budgeting
for Virtualized Servers,” In Fourth International Workshop on Feed-
back Control Implementation and Design in Computing Systems and
Networks (FeBID), 2009, 6 pages.

Seagrave, S., “Saving Power with VMware vSphere ESX—Dynamic
Voltage and Frequency Scaling (DVFES),” accessed at http://web.
archive.org/web/2013052016172 1/http://techhead.co/saving-
power-with-vmware-vsphere-esx-dynamic-voltage-and-frequency-
scaling-dvfs/, Oct. 27, 2009, pp. 1-6.

Zabaljauregui, M., “Hardware Assisted Virtualization Intel
Virtualization Technology”, 2008, pp. 1-53.

International Search Report and Written Opinion for International
Application No. PCT/US2013/049738, mailed on Jan. 29, 2014, 6

pages.

* cited by examiner

US 9,195,490 B2

Sheet 1 of 5

Nov. 24, 2015

U.S. Patent

[40]
oIl

¢ol
9|l

¢ol
gL

0€1 2PAD
yojedsiq pauipon

/S

s|npowl _~9C|
Bulspiosl

~. yojedsig

sdnd [~ vzl 819AD \

i

|2l

43"
Js|puey
uonezijenpia

_n||.|.J _ll..‘.l.J _ilnlnli
P LLE L 0L E o 60L
PWA D A T A

A B | [y

180k 1 | Z0L i i 90 !
PIA D T WA D WA

PR G | AR N

j—— =

TR "¥0l
' 4 S0l SSuUlyoe [enuip
N - ~
N
s|npow T~ ~ -
uoneznuenb ™ - - ~
S4Nd
\ iiiiii UU D 1ebeue WA
o) /
0cl
c0l allL

00l

US 9,195,490 B2

Sheet 2 of 5

Nov. 24, 2015

U.S. Patent

iZe.,

.~ ASAAQ—-o a
) dS4AQ /_>__>_> mu_>h_\

N FLLNA

L0C
\ Buusploay

€02

OHHAA e g mmm%o/ ININA

./ WA {BOLAA
1z I N
602 202 s|npouwl
OET Buliap.ioal
BPAS USTETSIC PoLIPON S4Ad
/7
9l

1424

022

8OMA /S X
/ os4na | asandy
WNA | ZOMWA

) $02

802 90¢

71 SI9AD YoTedsIa

a|npouwl
Buiznuenb
SdAd ™~ 243

0Z| - Jebeuew suiyoew [enuiA

U.S. Patent Nov. 24, 2015 Sheet 3 of 5 US 9,195,490 B2

S2

\ Receive, by a virtual machine manager, a first differential voltage frequency scaling
(DVFS) value of a first virtual machine

) '

~ Receive, by the virtual machine manager, a second DVFS value of a second virtual
machine

) i

\ Receive, by the virtual machine manager, a third DVFS value of a third virtual machine,
wherein the third DVFS value may be substantially the same as the first DVFS value and
different from the second DVFS value

. :

Generate a dispatch cycle to execute the first, second and third virtual machines on the
\ core, after execution of the first virtual machine, the dispatch cycle requires execution of
the third virtual machine before execution of the second virtual machine

Fig. 3

US 9,195,490 B2

Sheet 4 of 5

Nov. 24, 2015

U.S. Patent

winipawl | wnipaw

m wnipauwl sjgepeal _
sSuolnEeJIUNWWOD [1%7 m o|Jeplodal yy . u ~ Jayhdwod v

507,

"QULYDBW [BNLILA PUODISS dY} JO UOHNIOXS 10J3(SULYSBW [BNLIA PIIYL U} JO UOHINIIXD salmbai
b[oAd yoyedsIp a1 ‘QUTYDRW [BNIITA JSITJ 2Y) JO UONNOIXS IS UTAISYM ‘210D oY) U0 SSUTYSRUI [BNIITA
PIIY} pUR PUOIAS “ISIIF A} 2INOIXI 0} S[OAD YIRdSIP B TUNRISUST 10J SUOIONIISUL 2I0W IO U

I0 ‘anfea SYAJ PUOISS S} WOLJ WUAIJJIP PUER SMN[BA

SAAC ISI1J 21} Se 2ures ay) A[[enueisqns st anjea SIAJ PIY} U3 ULRISYAM “DUIYSRUL [BNIIA DI}

® JO onJeA STAC PIIY} € “IOSRURW SULYIBW [BNLIA 93U} AqQ “SUIAIS99] 10J SUOIONISUL IO IO SU()
IO ‘QUIYIBW [BNLIA PUOJIS

© JO aneA S JA(PUODSS B “IOFRURW SUIYILL [EN)IIA) AQ ‘TUTAI0I J0] SUONONNSUL AIOUL IO U
JO SUIYORW [ENLIIA ST © JO anfeA (SAAQ) Sureds Aouanboxg

93RI[0A TRIIURIAIIIP ISIY B “IATRURW SUIYORW [BNLIA B £q ‘SUIAIS03I 10] SUOTIONISUL AIOW I0 dU()
10 £2109 © 0} $S9008 SUI[NPayds 10] POYISW B 10} SUONONNSUL ALOUL IO U

Jo ouo 158 1y

ov

‘wnipsw Bulesq [eubls v 75%

‘1onpoud wesboud Jaindwios vy

00t

US 9,195,490 B2

Sheet 5 of 5

Nov. 24, 2015

U.S. Patent

(z99)
(s)301A3q

N

~

ONILNdINOD
H3HLO

e

(s)Lyod @

(¥95)

‘WO D

(099)
YITIOHULINOD
NHJOMLIN

-

L

A.vmmv SNg 30V443LN| 39Vd01S
(aaH “6e) (anarao “6-e)

(0gs)
H3ITIOHELNOD
AOVIHIALN|/SNG

>

(gs9)

(s)Ldod

o/l

ﬁ HIATIOHINOD
JOV4d3IN]|

{\Hv d3TI04INOD
JOVAYILNI

(9s9)

REREAA- L

(¥ss)

BUINELS

PG) SIOVAHAIN] TVHIHdIdEd

o

(zss)

(s)Ldod

Y

ﬁv ONISS3D0Hd

AHV ONISSID0dd

(0sS) NN

olany

(8¥G) LNN

SOIHAYED)

(0¥G) sng IOV4UALN|

o m mm mm mm e e mm o e e e S cme e e G e s ey

(8¢5) IovdoLls
JIGVACNTYH-NON

(955) IoVHOlS
J1avVAONTY

B

A (805) sng Adonap

= b

(819)

HITIOHLNOD AHOWIIN

1l

(915)

SY3Lsioay

(P1LS) _ T

dsd/nd4/nv
FHOD H055300dd

(Z19)
IHOYD
¢ 13A37

(015)
IHOVD
| 13A37

dsar

onyg

¥0G) 40S53004d

_\ (829)

v.1vd NolLona3y
HOLIMS S4AA

(b¢G) v1v(d Wydo0dd

(9zg)
AWHLIYHOOTY
NOILONAJ3Y

HOL1IMS S4Ad

(0zs)
WALSAS ONILYH3dQ

WYH/NOA

(20G) NOILVaNDIaN0D) J15vg

US 9,195,490 B2

1
DIFFERENTIAL VOLTAGE AND
FREQUENCY SCALING (DVFS) SWITCH
REDUCTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is the National Stage filing under 35
U.S.C. §371 of PCT Application Ser. No. PCT/US13/49738
filed on Jul. 9, 2013. The disclosure of the PCT Application is
hereby incorporated herein by reference in its entirety.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In computing systems, matching computational resources
to tasks that may be currently under execution by a processing
unit may improve power management. Differential voltage
and frequency scaling (“DVFS”) may be used at the operating
system or application level to alter the voltage and/or fre-
quency supplied to processing units according to varying
process demands. Computing systems may incorporate vir-
tualization where a core may execute two or more virtual
machines.

SUMMARY

In one example, methods for scheduling access to a core are
generally described. The methods may include receiving a
first differential voltage frequency scaling (DVFS) value of a
first virtual machine. The methods may further include
receiving a second DVFS value of a second virtual machine.
The methods may include receiving a third DVFS value of a
third virtual machine. The third DVFS value may be substan-
tially the same as the first DVFS value and different from the
second DVES value. The methods may further include gen-
erating a dispatch cycle to execute the first, second and third
virtual machines on the core. After execution of the first
virtual machine, the dispatch cycle may require execution of
the third virtual machine before execution of the second vir-
tual machine.

In one example, methods for scheduling access to a core are
generally described. The methods may include receiving a
first differential voltage frequency scaling (DVFS) value of a
first virtual machine. The methods may further include
receiving a second DVFS value of a second virtual machine.
The methods may include generating a first dispatch cycle to
execute the first and second and virtual machines on the core.
The methods may further include modifying the dispatch
cycleto produce a second dispatch cycle. The second dispatch
cycle may cause the core to execute the virtual machine
manager at the first DVFS value. The second dispatch cycle
may cause the core to execute the first virtual machine. The
second dispatch cycle may cause the core to execute the
virtual machine manager at the first DVFS value. The second
dispatch cycle may cause the core to execute the virtual
machine manager at the second DVFS value. The second
dispatch cycle may further cause the core to execute the
second virtual machine.

In one example, systems effective to schedule access to a
core are generally described. The systems may include a
memory that includes instructions. The systems may further
include a processor configured to be in communication with
the memory. The processor may be effective to, in accordance
with the instructions, receive a first differential voltage fre-

25

30

40

45

55

2

quency scaling (DVFS) value of a first virtual machine. The
processor may be further effective to, in accordance with the
instructions, receive a second DVFS value of a second virtual
machine. The processor may be effective to, in accordance
with the instructions, receive a third DVFS value of a third
virtual machine. The third DVFS value may be substantially
the same as the first DVFS value and different from the second
DVFS value. The processor may be further effective to, in
accordance with the instructions, generate a dispatch cycle to
execute the first, second and third virtual machines on the
core. After execution of the first virtual machine, the dispatch
cycle may require execution of the third virtual machine
before execution of the second virtual machine. The dispatch
cycle may cause the core to execute a virtual machine man-
ager at the first DVFS value. The dispatch cycle may further
cause the core to execute the third virtual machine. The dis-
patch cycle may further cause the core to execute the virtual
machine manager at the third DVFS value. The dispatch cycle
may further cause the core to execute the virtual machine
manager at the second DVFS value. The dispatch cycle may
further cause the core to execute the second virtual machine.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement differential voltage and frequency scaling (DVFS)
switch reduction;

FIG. 2 depicts the example system of FIG. 1 illustrating
additional details relating to a dispatch cycle;

FIG. 3 depicts a flow diagram for example processes for
implementing DVFS switch reduction;

FIG. 4 illustrates an example computer program product
that can be utilized to implement DVFS switch reduction; and

FIG. 5 is a block diagram illustrating an example comput-
ing device that is arranged to implement DVFES switch reduc-
tion, all arranged according to at least some embodiments
described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. The aspects of the present disclosure, as gen-
erally described herein, and illustrated in the drawings, can be
arranged, substituted, combined, separated, and designed in a

US 9,195,490 B2

3

wide variety of different configurations, all of which are
explicitly contemplated herein.

This disclosure is generally drawn to, inter alia, to tech-
nologies including methods, apparatus, systems, devices, and
computer program products related to differential voltage and
frequency scaling (DVFS) switch reduction.

Briefly stated, technologies are generally described for
systems, devices and methods effective to schedule access to
a core. A first differential voltage frequency scaling (DVFS)
value of a first virtual machine may be received by a virtual
machine manager. A second DVFS value of a second virtual
machine may be received by the virtual machine manager. A
third DVFS value of a third virtual machine may be received
by the virtual machine manager. The third DVFS value may
be substantially the same as the first DVFS value and different
from the second DVFS value. A dispatch cycle may be gen-
erated to execute the first, second and third virtual machines
on the core. After execution of the first virtual machine, the
dispatch cycle may require execution of the third virtual
machine before execution of the second virtual machine.

FIG. 1 illustrates an example system that can be utilized to
implement differential voltage and frequency scaling (DVFS)
switch reduction, arranged according to at least some
embodiments described herein. As depicted, an example pro-
cessor 100 may include one or more tiles 102. Tiles 102 may
include one or more cores 104. Each core 104 may be an
independent central processing unit that may read and
execute program instructions. Core 104 may include one or
more instantiations of virtual machines (“VMs”) 105 (includ-
ing VM 106, VM 107, VM 108, VM 109, VM 110, and VM
111) and/or an instantiation of a virtual machine manager
120. Virtual machines 105 may be software instantiations of
a computing environment or operating system. Virtual
machines 105 may emulate the architecture and/or the func-
tions of a physical machine. Tile 102 may include a virtual-
ization handler 112. Virtualization handler 112 may be hard-
ware located inside or outside of core 104 and may monitor
instructions requested to be executed by one or more virtual
machines 105. Virtualization handler 112 may be configured
to store control data related to instructions executed by one or
more virtual machines 105. Virtual machine manager 120
may be used to instantiate and/or control virtual machines
105. Virtual machine manager 120 may selectively allow
virtual machines 105, and virtual machine manager 120 itself,
to access core 104 based on a dispatch cycle 124. Dispatch
cycle 124 may be, for example, a scheduling tool configured
to allow access to core 104. Additionally, virtual machine
manager 120 may instantiate and/or control execution of vir-
tual machines 105 across one or more cores 104.

Different voltage and frequency scaling (“DVFS”) values
may be implemented at one or more tiles 102. In examples
where a tile has more than one core, the DVFS value may
apply for each core in the tile. DVFS scaling may result in a
DVFES value assigned by an operating system to each virtual
machine 105. A DVFS value may be a voltage and/or a fre-
quency at which core 104 may operate and may be adjusted or
scaled depending upon circumstances. Virtual machine man-
ager 120 may receive information relating to DVFS values of
each virtual machine 105. In an example where a tile provides
DVFS information for two or more virtual machines executed
on two or more cores, virtual machine manager 120 may
optimize the DVFS information by using the highest received
DVFES value for the tile. Virtual machine manager 120 may
include a DVFS quantization module 122. DVFS quantiza-
tion module 122 may be configured to quantize DVFS values
of virtual machines 105 into a finite set of discrete states.
DVFS values may be stored, for example, in one or more

25

30

35

40

45

4

floating point registers. In an example, DVFS quantization
module 122 may quantize DVFES values of virtual machines
105 by controlling values stored in the one or more floating
point registers. For example, prior to quantization, DVFS
values may take a nearly infinite number of values. After
quantization, DVFS quantization module 122 may limit
available DVFS values to a limited number of different val-
ues. The limited number of different values may be the finite
set of discrete DVFES states. DVFS quantization module 122
may also be located in virtualization handler 112 or elsewhere
within processor 100. Tile 102 may include a DVFS reorder-
ing module 126. DVFS reordering module 126 may be
included in virtual machine manager 120, virtualization han-
dler 112 or elsewhere within processor 100. DVFS reordering
module 126 may receive a dispatch cycle 124 of virtual
machines 105 and virtual machine manager 120. DVEFS reor-
dering module 126 may re-order dispatch cycle 124 to pro-
duce modified dispatch cycle 130 as is discussed below.

During operation, one of the virtual machines 105 may be
executed by core 104. To execute a switch from core 104
executing a first virtual machine to a second virtual machine,
core 104 may exit the first virtual machine. During an exit,
access to core 104 may be passed from the first, exiting virtual
machine 105, to virtual machine manager 120. Core 104 may
execute virtual machine manager 120. Thereafter, virtual
machine manager 120 may pass access to core 104 to the next
consecutive virtual machine 105 in dispatch cycle 124. In
some examples, the first virtual machine, the virtual machine
manager and the second virtual machine may all have differ-
ent DVES values. When core 104 switches execution from a
virtual machine to another virtual machine, including switch-
ing to the virtual machine manager, a DVFS switch may also
occur. As described in more detail below, virtual machine
manager 120 may modify dispatch cycle 124, with use of
DVFS reordering module 126, to produce modified dispatch
cycle 130. Modified dispatch cycle 130 may reduce a number
of DVFS switches when virtual machines exit a core. As
discussed herein, virtual machine manager 120 may: 1) quan-
tize DVFS values 2) adjust sizes of blocks of core time and/or
3) re-order blocks in the dispatch cycle.

FIG. 2 illustrates the example system of FIG. 1 with addi-
tional details relating to a dispatch cycle, arranged in accor-
dance with at least some embodiments described herein.
Those components in FIG. 2 that are labeled identically to
components of FIG. 1 will not be described again for the
purposes of clarity and brevity.

As depicted, example dispatch cycle 124 may include
blocks 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220
and 222. Modified dispatch cycle 130 may include blocks
201,203,205,207,209,211,213,215,217,219,221 and 223.
The illustrated blocks may represent a percentage of core
time allotted for a virtual machine, and for virtual machine
manager, to access core 104. Blocks of a particular dispatch
cycle 124 may total to substantially 100% of total core time
for the particular dispatch cycle. In order to ensure that virtual
machine manager 120 may perform necessary operations
during dispatch cycle 124, virtual machine manager 120 may
adjust sizes of blocks of other virtual machines. For example,
if the number of virtual machines to be executed during a
particular dispatch cycle has increased relative to a previous
dispatch cycle, virtual machine manager 120 may reduce the
size of blocks corresponding to one or more of the virtual
machines.

In another example, virtual machines 105 may be sched-
uled to be sequentially executed by core 104 based on dis-
patch cycle 124. Access to core 104 may be passed to virtual
machine manager 120 between executions of each consecu-

US 9,195,490 B2

5

tive virtual machine 105. In another example, execution of
privileged instructions by a virtual machine 105 may trigger
the passing of core access to virtual machine manager 120.
Following the triggering event, access to core 104 may be
returned to the previously executed virtual machine 105. Core
104 may operate at a different voltage and/or frequency based
on a requested DVFS value of a virtual machine 105 or a
DVFES value of virtual machine manager 120. DVFS quanti-
zation module 122 may quantize received DVFS values into a
finite set of discrete DVFS states. Any number of discrete
DVFES states may be used for the system described herein.

In an example, in block 202 of dispatch cycle 124, virtual
machine (“VM”) 106 may operate at a first quantized voltage
and a first quantized frequency denoted by “DVFSa.” Simi-
larly, in block 206 of dispatch cycle 124, virtual machine 107
may operate at a second quantized voltage and a second
quantized frequency denoted by “DVFSb.” Virtual machine
manager (“VMM”) 120 may also operate at a quantized volt-
age and frequency denoted by “DVFSc.”

As discussed previously, virtual machine manager 120
may adjust a size of blocks of core time assigned to respective
virtual machines 105 and assigned to virtual machine man-
ager 120 in dispatch cycle 124. Adjusting the size of the
blocks may help ensure that processing needs of each virtual
machine 105 are satisfied and that service level guarantees are
met. Virtual machine manager 120 may be configured to
adjust the size of the blocks based on a determination of
processing needs and/or service level guarantees of virtual
machines 105. For example, virtual machine manager 120
may increase the size of a block corresponding to a particular
virtual machine, where the virtual machine may require
increased access to core 104 to perform a scheduled task.
Virtual machine manager 120 may modify its own DVFS
value so that the DVFS state of virtual machine manager 120
matches the DVFS state of a next consecutive virtual machine
in a dispatch cycle. Virtual machine manager 120 may further
adjust sizes of blocks assigned to virtual machines knowing
that the DVFS state of virtual machine manager 120 will
change during the dispatch cycle. For example, virtual
machine manager 120 may determine that during the next
dispatch cycle, virtual machine manager 120 will need to
reduce its DVFS state to match the DVFS state of one or more
incoming virtual machines. While operating at the reduced
DVFES state, virtual machine manager 120 may require a
longer amount of time, relative to higher DVFS states, to
perform virtual machine manager operations. Accordingly,
virtual machine manager 120 may reduce the size of the
blocks assigned to various virtual machines during the next
dispatch cycle to allow virtual machine manager 120 greater
access to core 104.

DVFS reordering module 126 may be configured to reorder
blocks assigned to virtual machines 105 such that virtual
machines 105 with the same quantized DVES states may be
grouped together within modified dispatch cycle 130. Modi-
fied dispatch cycle 130 may require execution of virtual
machines with substantially the same DVFS value before
execution of virtual machines with a different DVFS value.
Accessto core 104 may be passed to virtual machine manager
120 between execution of each virtual machine 105. For
example, with reference to FIG. 2, before the reordering in
dispatch cycle 124, virtual machines 105 may be grouped in
the following order (proceeding clockwise from block 202):
VM 106, VM 107, VM 108, VM 109, VM 110 and VM 111.

After the reordering, in modified dispatch cycle 130, vir-
tual machines 105 may be ordered such that virtual machines
105 having substantially the same quantized DVFS states
may be grouped together and executed prior to virtual

10

15

20

25

30

35

40

45

50

55

60

65

6

machines with different DVFS states. For example, VM 106,
VM 109, and VM 110, may each have substantially the same
quantized DVFS state “DVFSa.” Therefore, DVFS reorder-
ing module 126 may group together VM 106, VM 109 and
VM 110 in blocks 203, 207 and 211 with virtual machine
manager 120 in between. Similarly, VM 107 and VM 111 may
each have substantially the same quantized DVEFS state
“DVFSb.” Therefore, DVFS reordering module 126 may
group together VM 107 and VM 111 in blocks 215 and 219
with virtual machine manager 120 in between. Modified dis-
patch cycle 130 may then be used to allow access to core 104.
In generating modified dispatch cycle 130, virtual machine
manager 120 may further be configured to modity its own
DVFES state to match the state of a next consecutive virtual
machine in modified dispatch cycle 130.

Inanexample, in block 201 of modified dispatch cycle 130,
virtual machine manager 120 may determine that the quan-
tized DVFS state of next consecutive virtual machine 106 in
block 203 is “DVFSa.” In generating modified dispatch cycle
130, virtual machine manager 120 may change the quantized
DVFS state of virtual machine manager 120 during block 201
to match that of the next consecutive virtual machine 106. In
the instant example, virtual machine manager 120 may
change its quantized DVFS state from “DVFSc” to “DVFSa,”
to match the quantized DVES state of next consecutive virtual
machine, VM 106. Similarly, in block 213, virtual machine
manager 120 may change its quantized DVFS state from
“DVFSa” to “DVFSb.” After changing DVFS states in blocks
201 and 213, virtual machine manager 120 may adjust a size
of blocks in modified dispatch cycle 130. By changing the
DVFS state of virtual machine manager 120, core 104 may
switch from virtual machine manager 120 (in block 201) to
VM 106 (inblock 203) to VMM 120 (in block 205) to VM 109
(in block 207) to VMM 120 (in block 209) to VM 110 (in
block 211) to VMM 120 (in block 213) without experiencing
a DVFS switch.

During operation of modified dispatch cycle 130, virtual
machine manager 120 may generate a new modified dispatch
cycle if the DVFS values have changed. In an example, pro-
ceeding from block 203 to block 205, VM 106’s entitlement
period to core 104 may elapse. VM 106 may exit to virtual
machine manager 120 at block 205. Virtual machine manager
120 may be passed access to core 104. Virtual machine man-
ager 120 may determine ifthe DVFS state of next consecutive
virtual machine VM 109 has changed. Virtual machine man-
ager 120 may determine the quantized DVFS state of next
consecutive virtual machine 109 such as by analyzing a vir-
tual machine control buffer. The virtual machine control
buffer may be, for example, a register or other memory con-
figured to store information relating to a virtual machine
including one or more virtual machine DVFS states. The
virtual machine control buffer may be associated with a par-
ticular core 104.

If virtual machine manager 120 determines that the DVFS
state of VM 109 changed, DVFS quantization module 122
may re-quantize DVFS values of virtual machines 105 into a
limited number of DVFS states. Blocks in modified dispatch
cycle 130 may then be re-adjusted and re-ordered to provide
virtual machine manager 120 sufficient core time.

During execution of modified dispatch cycle 130, a par-
ticular virtual machine 105 may enter a wait state. A wait state
may be, for example, a state in which virtual machine 105
remains idle until an input is received. When a virtual
machine 105 enters a wait state, virtual machine manager 120
may be configured to cause an exit from waiting virtual
machine 105 to virtual machine manager 120. Virtual
machine manager 120 may pass access to core 104 to the next

US 9,195,490 B2

7

consecutive virtual machine 105 of modified dispatch cycle
130. Waiting virtual machine 105 may receive a processing
credit corresponding to the remaining time allotted for the
waiting virtual machine in modified dispatch cycle 130. Prior
to the completion of modified dispatch cycle 130, virtual
machine manager 120 may pass access to core 104 back to
waiting virtual machine 105 for an amount of time corre-
sponding to the processing credit.

Among other possible benefits, a system in accordance
with the disclosure may reduce the number of DVFS switches
in a virtualized environment. As DVFS switching takes time,
reducing the number of DVFS switches may increase pro-
cessing speed by reducing lag. Quantizing DVFS values of
different virtual machines may produce a greater probability
that some virtual machines will have the same DVFS values
as one another. Virtual machines with matching DVFS values
may be grouped together within a dispatch cycle such that
these virtual machines may be executed consecutively. Such
a grouping may eliminate the need to switch DVFS states
between execution of the virtual machines. Reducing the
number of DVFS switches may also reduce power consump-
tion of a computing system.

FIG. 3 depicts a flow diagram for example processes for
implementing DVFS switch reduction, arranged in accor-
dance with at least some embodiments described herein. In
some examples, the process in FIG. 3 could be implemented
using processor 100 discussed above and could be used to
schedule access to a core. An example process may include
one or more operations, actions, or functions as illustrated by
one or more of blocks S2, S4, S6 and/or S8. Although illus-
trated as discrete blocks, various blocks may be divided into
additional blocks, combined into fewer blocks, or eliminated,
depending on the desired implementation.

Processing may begin at block S2, “Receive a first difter-
ential voltage frequency scaling (DVFS) value of a first vir-
tual machine.” At block S2, a first DVFES value of a first virtual
machine may be received, by a virtual machine manager. In
an example, the first DVFS value may be quantized into a
finite set of discrete DVF'S states.

Processing may continue from block S2 to block S4,
“Receive, by the virtual machine manager, a second DVFS
value of a second virtual machine.”” At block S4, a second
DVFES value of a second virtual machine may be received.

Processing may continue from block S4 to block S6,
“Receive, by the virtual machine manager, a third DVFS
value of a third virtual machine, the third DVFS value may be
substantially the same as the first DVFS value and different
from the second DVFS value.”” At block S6, a third DVFS
value of a third virtual machine may be received. The third
DVFES value may be substantially the same as the first DVFS
value and different from the second DVFS value.

Processing may continue from block S6 to block S8, “Gen-
erate a dispatch cycle to execute the first, second and third
virtual machines on the core, after execution of the first virtual
machine, the dispatch cycle requires execution of the third
virtual machine before execution of the second virtual
machine.” At block S8, a dispatch cycle may be generated.
The dispatch cycle may execute the first, second and third
virtual machines on the core. After execution of the first
virtual machine, the dispatch cycle may require execution of
the third virtual machine before execution of the second vir-
tual machine.

In an example, the first, second and third DVFS values may
be quantized into a finite set of discrete DVFS states prior to
generation of the dispatch cycle. In another example, gener-
ating the dispatch cycle may include adjustment of sizes of
blocks of core time for each of the first, second and third

10

15

20

25

30

35

40

45

50

55

60

65

8

virtual machines based on at least one of respective process-
ing needs and/or service level guarantees for the first, second
and third virtual machines. In another example, the dispatch
cycle may be modified to generate a modified dispatch cycle.
The modified dispatch cycle may cause the core to execute a
virtual machine manager at the first DVFS value.

In a further example, generating the modified dispatch
cycle may include adjustment of sizes of blocks of core time
for each of the first, second and third virtual machines based
on at least one of respective processing needs and/or service
level guarantees for the first, second and third virtual
machines. In another example, generating the modified dis-
patch cycle may further comprise adjustment of a size of
blocks of core time for the virtual machine manager. In
another example, a determination may be made that at least
one of the first, second or third DVFS values has changed to
a new DVFS value. A new dispatch cycle may be generated
based on the new DVFS value.

FIG. 4 illustrates an example computer program product
400 that can be utilized to implement DVFS switch reduction,
arranged in accordance with at least some embodiments
described herein. Program product 400 may include a signal
bearing medium 402. Signal bearing medium 402 may
include one or more instructions 404 that, when executed by,
for example, a processor 100, may provide the functionality
described above with respect to FIGS. 1-3. Thus, for example,
referring to the system of FIG. 1, processor core 104 may
undertake one or more of the blocks shown in FIG. 4 in
response to instructions 404 conveyed to the processor 100 by
medium 402.

In some implementations, signal bearing medium 402 may
encompass a computer-readable medium 406, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 402 may encom-
pass a recordable medium 408, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 402 may encom-
pass a communications medium 410, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example, pro-
gram product 400 may be conveyed to one or more modules
of the processor 100 by an RF signal bearing medium 402,
where the signal bearing medium 402 is conveyed by a wire-
less communications medium 410 (e.g., a wireless commu-
nications medium conforming with the IEEE 802.11 stan-
dard).

FIG. 5 is a block diagram illustrating an example comput-
ing device 500 that is arranged to implement DVFS switch
reduction, arranged in accordance with at least some embodi-
ments described herein. In a very basic configuration 502,
computing device 500 typically includes one or more proces-
sors 504 and a system memory 506. A memory bus 508 may
be used for communicating between processor 504 and sys-
tem memory 506.

Depending on the desired configuration, processor 504
may be of any type including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 504 may
include one more levels of caching, such as a level one cache
510 and a level two cache 512, a processor core 514, and
registers 516. An example processor core 514 may include
virtualization handler 112, an arithmetic logic unit (ALU), a
floating point unit (FPU), a digital signal processing core
(DSP Core), or any combination thereof. An example
memory controller 518 may also be used with processor 504,

US 9,195,490 B2

9

or in some implementations memory controller 518 may be
an internal part of processor 504.

Depending on the desired configuration, system memory
506 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 506 may include an operating system 520, one
or more applications 522 and program data 524. Application
522 may include a DVFS switch reduction algorithm 526 that
is arranged to perform the functions as described herein
including those described with respect to system 100 of FIGS.
1-4. Program data 524 may include DVFS switch reduction
data 528 that may be useful to implement DVFS switch
reduction as is described herein. In some embodiments, appli-
cation 522 may be arranged to operate with program data 524
on operating system 520 such that DVFS switch reduction
may be provided. This described basic configuration 502 is
illustrated in FIG. 5 by those components within the inner
dashed line.

Computing device 500 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 502 and any required
devices and interfaces. For example, a bus/interface control-
ler 530 may be used to facilitate communications between
basic configuration 502 and one or more data storage devices
532 via a storage interface bus 534. Data storage devices 532
may be removable storage devices 536, non-removable stor-
age devices 538, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 506, removable storage devices 536 and
non-removable storage devices 538 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
500. Any such computer storage media may be part of com-
puting device 500.

Computing device 500 may also include an interface bus
540 for facilitating communication from various interface
devices (e.g., output devices 542, peripheral interfaces 544,
and communication devices 546) to basic configuration 502
via bus/interface controller 530. Example output devices 542
include a graphics processing unit 548 and an audio process-
ing unit 550, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 552. Example peripheral interfaces 544
include a serial interface controller 554 or a parallel interface
controller 556, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 558. An example communication device 546
includes a network controller 560, which may be arranged to
facilitate communications with one or more other computing

10

15

20

25

30

35

40

45

50

55

60

65

10

devices 562 over a network communication link via one or
more communication ports 564.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 500 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 500 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Itwill be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite

articles “a” or “an” limits any particular claim containing

US 9,195,490 B2

11

such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2,3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

What is claimed is:
1. A method to schedule access to a core, the method
comprising:

receiving, by a virtual machine manager, a first differential
voltage frequency scaling (DVFS) value of a first virtual
machine;

receiving, by the virtual machine manager, a second DVFS
value of a second virtual machine;

10

15

20

25

30

35

40

45

50

55

60

65

12

receiving, by the virtual machine manager, a third DVFS
value of a third virtual machine, wherein the third DVFS
value is substantially the same as the first DVFS value
and different from the second DVFS value, and wherein
the first, second, and third virtual machines are different
virtual machines; and

generating a dispatch cycle to execute the first, second, and

third virtual machines on the core, wherein after execu-
tion of the first virtual machine, the dispatch cycle
requires execution of the third virtual machine before
execution of the second virtual machine.

2. The method of claim 1, further comprising, prior to
generation of the dispatch cycle:

quantizing the first, second, and third DVFS values into a

finite set of discrete DVFS states.

3. The method of claim 1, wherein generating the dispatch
cycle comprises adjustment of sizes of blocks of core time for
each of the first, second, and third virtual machines based on
at least one of respective processing needs and/or service
level guarantees for the first, second, and third virtual
machines.

4. The method of claim 1, further comprising:

modifying the dispatch cycle to generate a modified dis-

patch cycle, wherein the modified dispatch cycle causes

the core to:

execute the virtual machine manager at the first DVFS
value;

execute the third virtual machine;

execute the virtual machine manager at the third DVFS
value;

execute the virtual machine manager at the second
DVFS value; and

execute the second virtual machine.

5. The method of claim 4, wherein generating the modified
dispatch cycle comprises adjustment of sizes of blocks of core
time for each of the first, second, and third virtual machines
based on at least one of respective processing needs and/or
service level guarantees for the first, second, and third virtual
machines.

6. The method of claim 5, wherein generating the modified
dispatch cycle further comprises adjustment of sizes of
blocks of core time for the virtual machine manager.

7. The method of claim 1, further comprising:

determining that at least one of the first, second, or third

DVFS values has changed to a new DVFS value; and
generating a new dispatch cycle based on the new DVFS
value.

8. A method to schedule access to a core, the method
comprising:

receiving, by a virtual machine manager, a first differential

voltage frequency scaling (DVFS) value of a first virtual
machine;

receiving, by the virtual machine manager, a second DVFS

value of a second virtual machine, wherein the first and
second virtual machines are different virtual machines,
and wherein the first DVFS value is different from the
second DVFS value;

generating a first dispatch cycle to execute the first and

second virtual machines on the core; and

modifying the first dispatch cycle to produce a second

dispatch cycle, wherein the second dispatch cycle causes

the core to:

execute the virtual machine manager at the first DVFS
value prior to execution of the first virtual machine;

execute the first virtual machine;

execute the virtual machine manager at the first DVFS
value;

US 9,195,490 B2

13
execute the virtual machine manager at the second
DVFS value; and
execute the second virtual machine.

9. The method of claim 8, further comprising, prior to
generation of the first dispatch cycle:

quantizing the first and second DVFS values into a finite set

of discrete DVFS states.

10. The method of claim 8, further comprising:

determining that at least one of the first or second DVFS

values has changed to a new DVFS value; and
generating a third dispatch cycle based on the new DVFS
value.

11. The method of claim 8, wherein generating the first
dispatch cycle comprises adjustment of sizes of blocks of core
time for each of the first and second virtual machines based on
at least one of respective processing needs and/or service
level guarantees for the first and second virtual machines.

12. The method of claim 11, wherein generating the second
dispatch cycle comprises adjustment of sizes of blocks of core
time for each of the first and second virtual machines based on
at least one of respective processing needs and/or service
level guarantees for the first and second virtual machines.

13. The method of claim 12, wherein generating the second
dispatch cycle further comprises adjustments of sizes of
blocks of core time for the virtual machine manager.

14. A system effective to schedule access to a core, the
system comprising:

a memory that stores instructions; and

a processor configured to be in communication with the

memory, the processor effective to, in accordance with

the instructions:

receive, by a virtual machine manager, a first differential
voltage frequency scaling (DVFS) value of a first
virtual machine;

receive, by the virtual machine manager, a second DVFS
value of a second virtual machine;

receive, by the virtual machine manager, a third DVFS
value of a third virtual machine, wherein the third

10

20

25

35

14
DVFS value is substantially the same as the first
DVFS value and different from the second DVFS
value, and wherein the first, second, and third virtual
machines are different virtual machines; and
generate a dispatch cycle to execute the first, second, and
third virtual machines on the core, wherein after
execution of the first virtual machine, the dispatch
cycle requires execution of the third virtual machine
before execution of the second virtual machine, and
wherein the dispatch cycle causes the core to:
execute the virtual machine manager at the first DVFS
value;
execute the third virtual machine;
execute the virtual machine manager at the third
DVFS value;
execute the virtual machine manager at the second
DVFS value; and
execute the second virtual machine.

15. The system of claim 14, wherein the processor is fur-
ther effective to, prior to generation of the dispatch cycle:

quantize the first, second, and third DVFS values into a

finite set of discrete DVFS states.

16. The system of claim 14, wherein the processor is fur-
ther effective to:

determine that at least one of the first, second, or third

DVFS values has changed to a new DVFS value; and
generate a new dispatch cycle based on the new DVFS
value.

17. The system of claim 14, wherein generating the dis-
patch cycle comprises adjustment of sizes of blocks of core
time for each of the first, second, and third virtual machines
based on at least one of respective processing needs and/or
service level guarantees of the first, second, and third virtual
machines.

18. The system of claim 17, wherein generating the dis-
patch cycle further comprises adjustment of sizes of blocks of
core time for the virtual machine manager.

#* #* #* #* #*

